English
    Lehrstuhl für Botanik I - Pflanzenphysiologie und Biophysik

    Salztoleranz durch Salzblasen

    Versalzung von Böden ist eines der größten Probleme für die weltweite Pflanzenproduktion. Salztolerante Kulturpflanzen sind dringend erforderlich, um diesem Trend zu begegnen und salzhaltige Böden besser nutzen zu können. Halophyten (salzliebende Pflanzen) verwenden spezialisierte Mechanismen und Strukturen, um übermäßiges Salz von ihren metabolisch aktiven Geweben fern zu halten. Chenopodium quinoa, ein Pseudo-Getreide und Halophyt aus der Familie Amaranthaceae gehört zu den salztolerantesten Pflanzenarten der Erde. Die Fähigkeit dieser Pflanze, auf stark salzbelasteten Böden zu wachsen und hohe Erträge zu liefern beruhen in hohem Maße auf der Eigenschaftt, übermäßiges Salz in spezialisierten externen Strukturen, zu sogenannten Salzblasen differenzierten Blatthaaren (trichomen) auszulagern. Dieses Merkmal wird nicht von anderen Kulturpflanzen verwendet, und es gibt bislang keine Informationen zu den molekularen Mechanismen, mit denen das Salz aus den Epidermiszellen abtransportiert und in den Blasenzellen aufkonzentriert wird. In diesem Projekt wollen wir herausfinden, wie Quinoa mit der Salzbelastung umgeht und sogar davon profitiert. Wir wollen die wichtigsten Transportsysteme, die die Salzsequestrierung in Quinoa-Salzblasen vermitteln, identifizieren und charakterisieren und mit transkriptionellen und metabolischen Profilen verknüpfen. Die Erkenntnisse aus dem Projekt sollen es Züchtern zukünftig ermöglichen, diese Eigenschaft zu nutzen, um die Ernteerträge von Nutzpflanzen unter Salzbelastung zu verbessern.

    Quinoa Blatt mit Salzblasen (oben) und Vergößerungen von Salzblase und Stielzelle. (B) Modell der möglichen Transportvorgänge bei der NaCl-Beladung der Salzblasen.
    Modell der Salz-Sequestrierung in Quinoa-Salzblasen. (A) Quinoa-Blatt mit Salzblasen (oben), Vergrößerung einer epidermalen Salzblasenzelle (EBC, unten links), REM-Bild einer epidermalen Fuß- (EC) und einer Stielzelle (SC) nach Entfernung der EBC (unten rechts). (B) Modell der möglichen Kanäle und Transporter, die am Salztransport von der Epidermiszelle bis zur Blasenvakuole (BV) beteiligt sind.
    Kontakt
    Universität Würzburg
    Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik - Botanik I
    Julius-von-Sachs-Platz 2
    97082 Würzburg

    Tel. +49 931 31-86101
    Fax. +49 931 31-86857

    Suche Ansprechpartner
    Campus Dallenberg Hubland Süd Hubland Nord Fabrikschleichach Praxis Humangenetik Bienenstation